Reconstruct a synthetic signal from its scattering transform

In this example we generate a harmonic signal of a few different frequencies, analyze it with the 1D scattering transform, and reconstruct the scattering transform back to the harmonic signal.

Import the necessary packages

import numpy as np
import torch
from kymatio.torch import Scattering1D

from torch.autograd import backward
import matplotlib.pyplot as plt
device = torch.device("cuda" if torch.cuda.is_available else "cpu")

Write a function that can generate a harmonic signal

Let’s write a function that can generate some simple blip-type sounds with decaying harmonics. It will take four arguments: T, the length of the output vector; num_intervals, the number of different blips; gamma, the exponential decay factor of the harmonic; random_state, a random seed to generate random pitches and phase shifts. The function proceeds by splitting the time length T into intervals, chooses base frequencies and phases, generates sinusoidal sounds and harmonics, and then adds a windowed version to the output signal.

def generate_harmonic_signal(T, num_intervals=4, gamma=0.9, random_state=42):
    """
    Generates a harmonic signal, which is made of piecewise constant notes
    (of random fundamental frequency), with half overlap
    """
    rng = np.random.RandomState(random_state)
    num_notes = 2 * (num_intervals - 1) + 1
    support = T // num_intervals
    half_support = support // 2

    base_freq = 0.1 * rng.rand(num_notes) + 0.05
    phase = 2 * np.pi * rng.rand(num_notes)
    window = np.hanning(support)
    x = np.zeros(T, dtype='float32')
    t = np.arange(0, support)
    u = 2 * np.pi * t
    for i in range(num_notes):
        ind_start = i * half_support
        note = np.zeros(support)
        for k in range(1):
            note += (np.power(gamma, k) *
                     np.cos(u * (k + 1) * base_freq[i] + phase[i]))
        x[ind_start:ind_start + support] += note * window

    return x

Let’s take a look at what such a signal could look like.

T = 2 ** 13
x = torch.from_numpy(generate_harmonic_signal(T))
plt.figure(figsize=(8, 2))
plt.plot(x.numpy())
plt.title("Original signal")

Let’s take a look at the signal spectrogram.

plt.figure(figsize=(8, 8))
plt.specgram(x.numpy(), Fs=1024)
plt.title("Spectrogram of original signal")

# Doing the scattering transform.

J = 6
Q = 16

scattering = Scattering1D(J, T, Q).to(device)
x = x.to(device)

Sx = scattering(x)

learning_rate = 100
bold_driver_accelerator = 1.1
bold_driver_brake = 0.55
n_iterations = 200

Reconstruct the scattering transform back to original signal.

# Random guess to initialize.
torch.manual_seed(0)
y = torch.randn((T,), requires_grad=True, device=device)
Sy = scattering(y)

history = []
signal_update = torch.zeros_like(x, device=device)

# Iterate to recontsruct random guess to be close to target.
for k in range(n_iterations):
    # Backpropagation.
    err = torch.norm(Sx - Sy)

    if k % 10 == 0:
        print('Iteration %3d, loss %.2f' % (k, err.detach().cpu().numpy()))

    # Measure the new loss.
    history.append(err.detach().cpu())

    backward(err)

    delta_y = y.grad

    # Gradient descent
    with torch.no_grad():
        signal_update = - learning_rate * delta_y
        new_y = y + signal_update
    new_y.requires_grad = True

    # New forward propagation.
    Sy = scattering(new_y)

    if history[k] > history[k - 1]:
        learning_rate *= bold_driver_brake
    else:
        learning_rate *= bold_driver_accelerator
        y = new_y

plt.figure(figsize=(8, 2))
plt.plot(history)
plt.title("MSE error vs. iterations")

plt.figure(figsize=(8, 2))
plt.plot(y.detach().cpu().numpy())
plt.title("Reconstructed signal")

plt.figure(figsize=(8, 8))
plt.specgram(y.detach().cpu().numpy(), Fs=1024)
plt.title("Spectrogram of reconstructed signal")

plt.show()

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery